

Does it really matter whether delamination toughness of polymer composites is a material parameter?

Andreas J. Brunner

retired from Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

Experimental evidence I

Is there a thickness effect «h»? Was investigated ≈ 1990 in Mode I delamination test development [1]:

[1] Davies et al. Composites Science and Technology 43 (1992) pp. 129-136

Loading block

Adhesive -

Insert

Experimental evidence II

(b) with loading blocks

Are thickness effects in PEEK process-related [2] ?

8 mm laminates milled to 3 mm, 4 mm and 5 mm: "The initiation values of the fracture toughness were independent of the specimen thickness both for AS4/PEEK laminates and T800/3631 laminates." For AS4/PEEK: "The genuine thickness effect on the propagation values obtained here was much smaller than the effect resulting from molding laminates of different thickness."

For CF/EP: "The effect of specimen thickness on the propagation values at a certain crack length was smaller than the scatter of the data points for the two panels tested here."

[2] Hojo & Aoki 4th ASTM Symp. STP 1156 (1993) pp. 281-298

Experimental evidence III

- Round robin repeatability and reproducibility 10-20%
- Material variability yields intrinsic scatter, ≈ 1-3% for CFRP, ≥ 3-5% for GFRP [3,4]
- Measurement resolution scatter estimate is ≤ 6% [3]
- Additional sources of significant scatter are human operator actions in set-up, measurement, and data analysis [3]

[3] Brunner, Engineering Fracture Mechanics, 264 (2022) 108340
[4] Tsai and Melo, Composites Science and Technology, 100 (2014) pp. 237–243

Experimental evidence IV

Is there a width effect «b»? Was investigated

≈ 1990 in Mode I delamination test development [5], widths 12.5 mm, 25.0 mm and 37.5 mm tested

"Because no significant width effect was discovered 20-25 mm wide specimens were tested in the 4th and 5th rounds."

But Mode I 2D delamination involves membrane stresses and depends on fiber lay-up and size and shape of loading device and precrack [6,7]

[5] O'Brien & Martin NASA TM 104222, 1992

[6] Cameselle Molares et al. Engineering Fracture Mechanics 203 (2018) pp. 152–171

[7] Wang et al. Engineering Fracture Mechanics 250 (2021) 107787

⁽b) with loading blocks

5

Modelling and prediction

Blind modelling prediction of damage, e.g., open hole fatigue strength, yields up to 70% scatter depending on fiber orientation [8]

	Experiment σ_{max} (MPa)	$\begin{array}{l} \text{GENOA} \\ \sigma_{\text{max}} \text{ (MPa)} \end{array}$	$\begin{array}{l} \text{DCN} \\ \sigma_{\text{max}} \text{ (MPa)} \end{array}$	MDS-C σ_{max} (MPa)	$\begin{array}{l} \text{BSAM/MIC} \\ \sigma_{\text{max}} \text{ (MPa)} \end{array}$	MAC/GMC* σ _{max} (MPa)	Helius PFA* σ _{max} (MPa)	EHM* σ _{max} (MPa)	Average error %
Residual strength after fatig	ue (200 K/300	K cycles)							
[0/45/90/—45] _{2s}	544	498	450	498	684	342	475	522	16
[60/0/-60] _{3s}	675	468	0	0	828	237	0	0	74
[30/60/90/-60/-30] _{2s}	474	384	383	0	408	303	428	307	26
Average error (%)		16	42	69	17	44	38	44	39
Open-hole compression [0/45/90/-45] _{2s}	-317	-389	-295	-296	-325		-282	-355	15
[60/0/-60] _{3s}	-378	-420	0	0	-362	-127	0	0	69
[30/60/90/-60/-30] _{2s}	274	-380	-245	0	-332	-165		_248	33
Average error (%)		24	39	69	9	50	40	41	39
	Experiment	GENOA	DCN	MDS-C	BSAM/MIC	MAC/GMC*	Helius PFA*	EHM*	Average
	E (GPa)	E (GPa)	E (GPa)	E (GPa)	E (GPa)	E (GPa)	E (GPa)	E (GPa)	error %

Table 2. Overall blind predictions summary of stiffness and residual strength.

[8] Engelstad & Clay Journal of Composite Materials, 51, No. 15 (2017) pp. 2227-2249

Micro-scale morphology effects

Morphology – scale estimate [9] and time-dependent behavior [10]

Average delamination damage size increment (diameter) from radiography: a few ten to few hundred micrometers, time-scale a few ten nanoseconds to a few microseconds Toughness changes for constant media exposure at constant temperature: How to predict toughness for media exposure and temperature both varying at different time-scales?

[9] Brunner, Journal of Acoustic Emission, 33 (2016) pp. S41-S49
 [10] Salamt-Talab et al. Science and Engineering of Composite Materials, 28 (2021) pp. 382–393

Conclusions

- Experimental toughness data and models both still suffer from significant scatter limiting comparison and predictions
- Multi-scale morphology, multiple delaminations, and time-dependent phenomena interacting on all scales yield effects on toughness observed in composite structures
- Understanding multi-scale morphology of composites and relevant interactions from micro-/nano-scale size and time up is essential for improving toughness prediction in composite structures from material test data
- Hence, in my opinion, it does not matter whether delamination toughness is a material parameter or not, you have to understand what you do when using experimental toughness data for whatever purpose

Thank you for your attention